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Pricing greenhouse-gas (GHG) emissions involves making trade-
offs between consumption today and unknown damages in the
(distant) future. While decision making under risk and uncer-
tainty is the forte of financial economics, important insights
from pricing financial assets do not typically inform standard
climate–economy models. Here, we introduce EZ-Climate, a sim-
ple recursive dynamic asset pricing model that allows for a
calibration of the carbon dioxide (CO2) price path based on prob-
abilistic assumptions around climate damages. Atmospheric CO2
is the “asset” with a negative expected return. The economic
model focuses on society’s willingness to substitute consump-
tion across time and across uncertain states of nature, enabled
by an Epstein–Zin (EZ) specification that delinks preferences over
risk from intertemporal substitution. In contrast to most mod-
eled CO2 price paths, EZ-Climate suggests a high price today
that is expected to decline over time as the “insurance” value
of mitigation declines and technological change makes emissions
cuts cheaper. Second, higher risk aversion increases both the CO2
price and the risk premium relative to expected damages. Lastly,
our model suggests large costs associated with delays in pric-
ing CO2 emissions. In our base case, delaying implementation by
1 y leads to annual consumption losses of over 2%, a cost that
roughly increases with the square of time per additional year
of delay. The model also makes clear how sensitive results are
to key inputs.

climate risk | asset pricing | cost of carbon

For over 25 y, the dynamic integrated climate–economy
(DICE) model (1–3) has been the standard tool for analyz-

ing CO2 emissions-reductions pathways, and for good reason.
One attraction is its simplicity, turning a “market failure on
the greatest scale the world has seen” (4) and “the mother
of all externalities” (5) into a model involving fewer than 20
main equations, 3 representing the climate system (6). DICE has
spawned many variants (7). It has also helped set the tone for
what many consider “optimal” CO2 price paths. The core trade-
off between economic consumption and climate damages leads
to relatively low CO2 prices today rising over time.

DICE and models like it have well-known limitations, includ-
ing how they represent climate risk and uncertainty (7–15).
DICE, for example, is not an optimal-control model, as com-
monly understood by economists employing modern dynamic
economic analysis, even though it lends itself to those extensions
(9–12). The underlying structure all but prescribes a rising CO2
price path over time.

One important limitation is the form of the utility function.
Constant relative risk aversion (CRRA) preferences, standard
in most climate–economy models (1, 7, 16), assume that eco-
nomic agents have an equal aversion to variation in consumption
across states of nature and over time. Evidence from financial
markets suggests that this is not the case (17). The risk premium
(RP) of equities over bonds points to a fundamental difference
in how much society is willing to pay to substitute consumption
risk across states of nature compared to over time (18, 19). Some
have explained the discrepancy by allowing for extreme events
(20–22), and others have looked to more flexible preferences
(23–26) or both (27). Our own preference specification follows
Epstein and Zin (EZ) (24, 25).

EZ Preferences
Here, we use EZ preferences and focus on climate uncertain-
ties. We approach climate change as an asset pricing problem
with atmospheric CO2 as the “asset.” The value of an invest-
ment in reducing CO2 emissions depends on the state of nature,
represented by its fragility θt . That, in turn, helps determine the
discount rate applied to the damages that would have occurred
without the investment.

Our representative agent maximizes a recursive utility Ut

based on consumption ct and expectations Et over future utility
for times t ∈{0, 1, 2, . . . ,T − 1}:

Ut =
[
(1−β)cρt +β(Et [U

α
t+1])

ρ
α

] 1
ρ
. [1]

Parameters α and ρ measure the agent’s willingness to substitute
consumption across states of nature and across time, respec-
tively. (See Methods for the final-period utility UT and further
derivations.) CRRA preferences are a special case, with α= ρ.
Unlike with CRRA, Eq. 1 implies that CO2 prices no longer col-
lapse to zero with increasing risk aversion (RA) and equity risk
premia (Fig. 1A). The same goes for the portion of CO2 prices
explained by RA (Fig. 1B).

EZ preferences have since found their way into the climate–
economic literature (9–12, 28–35). Some have embedded EZ
into DICE (28, 35), and others employ supercomputers to solve
(9–12). The complexity typically does not allow for analytic solu-
tions (34). We here follow a simple binomial-tree model with a
long history in financial modeling application (36). It is precisely
this modeling choice—standard in financial economics but novel
to climate–economic applications—that leads to our fundamen-
tally differing CO2 price paths. Mitigating climate risk provides
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Fig. 1. Risk calibration. A shows how using EZ preferences, unlike CRRA,
results in increasing 2015 CO2 prices, in 2015 US$, with increasing RA, trans-
lated into the implied equity RP using Weil’s conversion (19), while holding
implied market interest rates stable at 3.11%. B shows how the percentage
of the 2015 CO2 price explained by RA, as opposed to expected damages
(EDs), increases with equity RP for EZ utility, while decreasing for CRRA (Risk
Decomposition).

a hedge, leading to high CO2 prices early on. As uncertainties
decline over time, so do CO2 prices.

Model
The setting for EZ-Climate is a standard endowment econ-
omy (37). In each period, the agent is endowed with a certain
amount of the consumption good ct . However, she is not able
to consume the full ct for 2 reasons: climate change and cli-
mate policy. In periods t ∈{1, 2, . . . ,T}, a portion of ct may be
lost due to climate-change damages, which are, in turn, a func-
tion of cumulative radiative forcing (CRFt ) up to time t and of
fragility θt : Dt (CRFt , θt). Up to period T − 1, the agent may
elect to spend some of ct to reduce her impact on the future
climate, κt , which, in turn, depends on mitigation xt . The result-
ing consumption ct , after Dt and κt are taken into account,
is given by:

c0 = c0 (1−κ0 (x0)), [2]

ct = ct (1−κt (xt))(1−Dt (CRFt , θt)), [3]
for t ∈{1, 2, . . . ,T − 1}, and

cT = cT (1−DT (CRFT , θT )). [4]

CRFt is a function of mitigation, xs , in each period from 0 to
t , calibrated to a combination of Representative Concentration
Pathway (RCP) scenarios (Climate Damages).

The agent maximizes utility given by Eq. 1 in each of T periods
by selecting, at each time and in each state, a level of mitigation
xt , creating in essence a “2T+1− 1”-dimensional optimization
problem. Fig. 2A shows our base case, which uses a 7-period
tree with decision nodes from 2015 through 2300. At each node,
more information about θt and the resulting climate damages is
revealed, before uncertainty is resolved at the beginning of the
penultimate period in 2300. In the “easy” spirit of EZ-Climate,
the limited number of decision points makes the solution both
tractable and quickly solvable.

EZ-Climate provides an accessible, modular framework
(7) that is dependent on key economic inputs—chiefly, RA
and the elasticity of intertemporal substitution (EIS)—and 2
main climate-related ones: mitigation costs and climate dam-
ages. Costs depend primarily on assumptions around backstop

Fig. 2. Model tree structure. A shows a diagram of the binomial tree struc-
ture (with probability p = 1

2 ) used in solving the model for each state of
nature θt across time t∈{1, 2, . . . , T}, corresponding to years 2015, 2030,
2060, 2100, 2200, 2300, and final period 2400. Note the “recombining” tree
structure, highlighted in the first 2 periods: Damage functions in any par-
ticular state are independent of the path taken, but xt and the resulting
Ut are path-dependent. B shows the CO2 price in the base case (peakT = 6,
disaster tail = 18, and EIS = 0.9).
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technologies (38) and technological change. Damages depend
on the full climate–economic chain from economic output to
CO2 emissions, from emissions to concentrations, from concen-
trations to CRF , and from CRF to climate damages lower-
ing economic consumption. While all of these calibrations are
important, and uncertainties abound, a key addition is allowing
for potentially catastrophic risk in form of climatic tipping points
(TPs) (39, 40) (Climate Damages).

Results and Discussion
Fig. 2B shows CO2 prices for each node of the tree in our base
case. The 2015 CO2 price comes from a single node in the tree.
In each subsequent period, the price is set in expectation over
all possible states of nature θt in that given period. All grouped
nodes at a given time have the same θt and, thus, the same
damage for a given amount of CRF . The price itself is path-
dependent. Fig. 2B also shows the costs associated with bad θt
draws in latter periods. Bad news is costly. Bad news late, when it
is more difficult to counteract with more active policy, is worse. It
is precisely the inability to know upfront when good or bad news
arrives that accounts for the insurance value of early mitigation
and, thus, the role that the resolution of risk over time plays in
the declining CO2 price.

Declining CO2 Price. Unlike most modeled CO2 price paths,
ours typically rise briefly before declining over time. One par-
tial explanation is the move from CRRA to EZ preferences.
CRRA preferences duplicate the decline only with a RA= 10

9
∼

1.1, when EZ collapses to CRRA. For higher RA, consistent
with those estimated from models calibrated to financial-market
data, early CRRA prices collapse to near zero (Fig. 3A). But

Fig. 3. Declining CO2 price paths. A shows how EZ utility here leads to
CO2 prices that start high and decline over time, regardless of assumed RA,
a feature mimicked only by unrealistically low RA = 10

9 ∼ 1.1, when EZ and
CRRA utilities coincide (Economic Parameters). B and C show the importance
of EIS and the rate of pure time preference (δ), respectively. B varies real
interest rates from 2.74% (EIS = 1.2) to 3.77% (EIS = 0.6) to keep c = 1.5%.
C fixes EIS at 0.9, while δ varies from 0.25% to 0.75% (SI Appendix, Figs. S5
and S6).

Fig. 4. CO2 price sensitivities. A shows the implications of technological
change and TP assumptions. Setting ϕ0 = 0% ϕ1 = 0 increases early-year
and final-period prices, flattening the price path. Multiple TPs act akin
to fattening the tail of the damage function, steepening the price path.
They also interact with the no-technological-change assumption, increasing
final-period prices. B shows that 2015 CO2 prices depend crucially on
“catastrophic” climate risk assumptions, set to peakT = 6◦C and disaster
tail = 18 in the base case (Climate Damages). C, by contrast, shows the min-
imal implications of extending the final period from 2300 to 2400 for t = 6
and 7, respectively, in the base case to 2400 and 2700.

going from CRRA to EZ preferences is not the only expla-
nation, implied by the fact that CRRA price paths stay flat
over time.

Others have pointed to reasons for declining CO2 price
paths including producer behavior (41), the need for directed
technological change from “dirty” to “clean” sectors (42), or
inertia (43). We here find 2 factors driving the declining CO2
price paths: the resolution of uncertainty, combined with tech-
nological progress that makes mitigation significantly cheaper
over time.

Our base case assumes exogenous technological progress ϕ0 =
1.5% and endogenous progress ϕ1 =0.015 per year, linked to
average mitigation efforts to date (Eq. 19). The combination
makes mitigation costs diminishingly small hundreds of years
out, helping to drive the declining price paths (Fig. 4A and SI
Appendix, Fig. S3).

Another reason for declining price paths is the assumed nature
of TPs in the base case. Each node has a certain probability
of hitting a TP, given by Eq. 22. Once hit, there is no revers-
ing the resulting damages. That structure increases prices in
early years, decreasing them later, as it introduces a noncon-
cavity into the damage function (37). Allowing for multiple TPs
exacerbates that result in the base case, as it fattens the tail
of the damage function (Fig. 4A). Assuming no technological
change, meanwhile, increases final-period prices, more so with
multiple TPs.

While the declining CO2 price path is a persistent feature
across model specifications (SI Appendix, Figs. S3, S5, and S6),
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Table 1. Social cost of delay by first-period length

First-period Annual consumption impact
length, y during first period, %

5 11
10 23
15 36

Absolute annual household consumption numbers are around $40 trillion
per year.

the absolute CO2 price in early years depends crucially on a
number of calibration choices. Fig. 3 shows the importance of
economic parameters, chiefly, EIS and the pure rate of time pref-
erence (δ). Fig. 4B shows the sensitivity of the initial CO2 price
to assumptions around “catastrophic” climate risk. Our base case
assumes 6 ◦C for the “peak temperature” (peakT ) and 18 for the
disaster tail calibrations. While there is seeming convergence
around 6 ◦C as an upper bound for what could conceivably be
quantified (see, for example, https://helixclimate.eu/), declaring
it equivalent to a “global TP” is at best unduly conservative (11,
15, 40), at worst arbitrary. Much more work is needed to justify
any one particular parameter value and, thus, any one CO2 price
(7). Our goal with EZ-Climate is to provide a simple, modular
framework to think about climate risks, uncertainties, TPs, and
their implications for CO2 prices.

Social Cost of Delay. The optimal-control nature of EZ-Climate
also allows for a calculation of the social cost of delay in imple-
menting CO2 prices. Unlike prior efforts (2, 7), we do not look
to the CO2 price for estimating that cost. In fact, doing so can
be positively misleading. After constraining the price to $0 in
the first period, the price in the second period is lower than in
the unconstrained case. The price reflects the marginal bene-
fits of additional emissions reductions, which are now lower. We
here instead quantify the cost of delay by constraining mitiga-
tion to zero in the first period and asking how much additional
consumption would be required during that period in order to
bring the utility of the representative agent to the level of the
unconstrained solution.

Table 1 shows the annual consumption loss during the con-
strained first period. For a 10-y delay, the equivalent annual
consumption loss over the first constrained period is ∼23%:
Each year of delay increases the annual consumption loss over
the entire constrained period by ∼2.3%. It also increases the
time interval of the loss, thus leading to a slightly more than
quadratic rate of increase in the deadweight loss of utility over
time. In rough monetary terms, delaying implementation by only
1 y costs society approximately $1 trillion. A 5-y delay creates
the equivalent loss of approximately $24 trillion, comparable to
a severe global depression. A 10-y delay causes an equivalent loss
in the order of $10 trillion per year, approximately $100 trillion
in total.

Conclusion
Our conclusion could mimic that of DICE, introduced over 25 y
ago (1), with one crucial difference: Like with DICE, and despite
crucial recent advances (7, 35), “it should be emphasized that
this analysis has a number of important qualifications,” espe-
cially, ironically, “the economic impact of climate change” (1).
Unlike DICE, EZ-Climate does not “[abstract] from issues of
uncertainty” (1). It embraces them, following a simple binomial-
tree framework long used in the finance literature (36). The
simple, modular framework also highlights the sensitivity of
CO2 prices to key inputs. There is no single, correct, “optimal”
price path. One persistent feature, however, is declining price
paths. That puts the focus on near-term action and on the large
costs of delay.

Methods
Utility Specification. Eq. 1 represents a special case of Kreps–Porteus pref-
erences (23), following EZ (24, 25) for t∈{0, 1, 2, . . . , T − 1}, with ct given
by Eqs. 2–4. In t = T (=2400, in our base-case calibration), the representa-
tive agent receives utility from all present discounted consumption from T
onward. Consumption grows at a constant rate r for t≥ T :

ct = cT (1 + r)t−T , [5]

with cT given by Eq. 4. The resulting final-period utility is:

UT =
[

1−β
1−β(1+r)ρ

] 1
ρ cT . [6]

Risk Decomposition. Fig. 1B shows the split between EDs and the RP in
explaining 2015 CO2 prices (44). To calculate the cost of an additional ton
of CO2 emissions, we sum over all consumption damages, in every state of
nature s at every future time t, multiplied by the value of an additional unit
of consumption for each s and t. The 2015 CO2 price, thus, is:∑T

t = 1

∑S(t)
s = 1 πs,tms,tDs,t =

∑T
t = 1 E0

[
m̃tD̃t

]
, [7]

where S(t) denotes the number of states at time t, πs,t the probability of

state s at time t, and pricing kernel ms,t =
(
∂U
∂cs,t

)
/
(
∂U
∂c0

)
. Eq. 7 can be

further decomposed into ED and RP:∑T
t=1 E0 [m̃t]E0

[
D̃t

]
︸ ︷︷ ︸

ED

+
∑T

t=1 cov0

[
m̃t , D̃t

]
︸ ︷︷ ︸

RP

. [8]

Note that Eo [m̃t] = 1/Rf (0, t), where Rf (0, t)is the payoff, at time t, to a $1
investment in a risk-free bond at t0. Alternatively, E0 [m̃t] is the risk-free dis-
count factor between today and t. ED, thus, is the sum of marginal climate
damages, discounted back to the present at the risk-free rate:

ED =
∑T

t=1 E0

[
D̃t

]
/Rf (0, t). [9]

RP then is the difference between the CO2 price and ED.

Mitigation Costs. Calibrating the mitigation cost requires specifying a rela-
tionship between the marginal cost of emissions reductions, equal to the
per-ton tax rate τ , the resulting flow of emissions per year g (τ), and the
fraction of emissions reduced x (τ).

Many modeling efforts have attempted to estimate the marginal abate-
ment costs (MACs), often as part of integrated assessment models. See,
for example, Stanford’s Energy Modeling Forum (https://emf.stanford.edu/).
Perhaps the most influential, independent effort comes from McKinsey &
Company in an attempt to estimate a bottom-up MAC curve (MACC) (45).
McKinsey’s MACCs are, to a large extent, based on bottom-up “engineer-
ing” estimates. That makes them an easy target for critique by economists,
who often focus on the large abatement opportunities with “negative”
costs or the “energy-efficiency gap” (46, 47). We calibrate τ , g (τ), and (x (τ)

based on McKinsey’s global MACC effort (48), with one crucial modification:
We set x (τ)= 0 for τ ≤ 0; i.e., we assume no net-negative cost mitigation.
SI Appendix, Table S1 shows the resulting modified point estimates, which
we fit to a power function for x (τ), yielding:

x (τ) = 0.0923τ0.414
. [10]

The corresponding inverse function, solving for τ to achieve x, yields the
marginal cost of abatement:

τ (x)= 314.32x2.413
. [11]

Ultimately, we are interested in the total cost to society κ (τ) for each par-
ticular tax τ . We calculate κ (τ)using the envelope theorem, assuming the
representative agent chooses g (τ)so as to maximize consumption c given τ :
dc(τ)

dτ =−g (τ). Consumption x associated with a particular τ , thus, equals:

c (τ)= c−
∫ τ

0 g (s)ds. [12]

However, Eq. 12 is only correct if the government were to collect τ and
then waste 100% of the proceeds g (τ)τ . Here, we assume instead that the
proceeds are refunded in lump sum (49). Refunding g (τ)τ and rewriting
Eq. 12 yields total mitigation costs of:
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K (τ)=
∫ τ

0 g (s)ds− g (τ)τ. [13]

The lump-sum refund does not allow for CO2 tax proceeds to be used to
decrease other distortionary taxes, which would make the total costs smaller
still (50, 51). Rewriting g (τ)= g0 (1− x (τ)), where g0 is the emissions
baseline, we can rewrite Eq. 13 as:

K (τ) = g0
[
τx (τ)−

∫ τ
0 x (s)ds

]
. [14]

Substituting Eqs. 10 and 11 into Eq. 14 and dividing by current aggregate
consumption yields the societal cost of a given level of mitigation as a
percentage of initial consumption c0:

κ (x) = (g092.08/C0)x3.413
. [15]

Our base-case calibration assumes g0 = 52 billion tons of CO2-equivalent
emissions and c0 = $31 trillion/year representing current 2015 global con-
sumption in 2015 US$. Eq. 15 assumes no technological progress and no
backstop technology.

Backstop Technology. We also allow for a backstop technology in form of
CO2 removal (38, 52) to become available at cost τ∗ at x0 and to be used
exclusively for MACs ≥ τ̃ . The MACC including a backstop follows:

B (x)= τ̃ −
(

k
x

) 1
b . [16]

We calibrate Eq. 16 to set B (x0)= τ∗, and we impose a smooth-pasting
condition at x0, resulting in:

k = x0
(
τ̃ − τ∗) τ̃−τ∗

(α−1)τ∗ . [17]

Our base case assumes τ∗ = $2, 000 and τ̃ = $2, 500 in 2015 dollars. Under
the most aggressive backstop scenario presented in Results and Discussion,
we assume τ∗ = $300 and τ̃ = $350. SI Appendix, Fig. S1 shows the resulting
2015 τ (x).

Technological Progress. SI Appendix, Fig. S1 is calibrated to t = 0. In subse-
quent periods, we allow the MACC to decrease at a rate determined by a
set of technological change parameters: a constant component ϕ0 and an
endogenous component linked to mitigation efforts to date ϕ1Xt , where Xt

is the average mitigation up to time t defined by:

Xt =
∑t

s=0
gsxs

/∑t

s=0
gs. [18]

Mitigation costs at time t are:

κt (x)=κ (x)[1−ϕ0−ϕ1Xt]
t. [19]

This functional form allows for easy calibration. For example, if ϕ0 = 0.005
and ϕ1 = 0.01, and with average mitigation Xt = 50%, κt (x)decreases at a
rate of 1% per year.

SI Appendix, Fig. S3 shows the implications of both backstop technology
and technological progress on the CO2 price.

Climate Damages. We derive Dt (CRFt , θt) in 2 steps. Damages are a func-
tion of temperature changes ∆T , which, in turn, are a function of CRF. We
calibrate ∆T over time based on the International Energy Agency’s (IEA’s)
projections for ∆T100 using its “new policies scenario” (53), equating the
values with t = 100. We fit a displaced gamma distribution (54) around the
IEA’s 2100 greenhouse gas (GHG) concentration projections for 450, 650, and
1,000 ppm. SI Appendix, Table S2 shows the calibration results. We translate
∆T100 into ∆Tt for t = 0 (year 2015) through t = 385 (year 2400) using:

∆Tt = 2 ∆T100

[
1− 0.5

t
100

]
. [20]

SI Appendix, Fig. S2 shows the results for ∆Tt based on ∆T100 values. We
then fit a log-normal distribution for equilibrium climate sensitivity (15,
55) around ∆T100 to generate distributions for ∆Tt based on emissions-
reduction pathways xt . One important possible extension is around timing,
further probing our assumption of equating effects at ∆T100 with climate
sensitivity (56).

We calibrate damages Dt based on ∆T considering 2 multiplicative com-
ponents: a noncatastrophic loss function and a catastrophic hazard function
(32). The noncatastrophic component is in the form of a displaced gamma
distribution (54), resulting in the loss function:

L (∆Tt)= e−13.97γ∆Tt
2
. [21]

Parameter γ is drawn from a displaced gamma distribution with its 3 param-
eters a = 4.5, d = 21,341, and p =−0.0000746. That calibration, much like
other econometrically based estimates extrapolating from past experience
(57), all but rules out “catastrophic” damages and so-called climatic TPs or
“tipping elements” (39, 40).

We augment this calibration with a “catastrophic” component, assum-
ing a particular probability of hitting a climatic TP, Prob (TP), in any given
period, if temperature changes cross a peakT threshold:

Prob (TP) = 1−
(

1−
[

∆T (t)

max [∆T (t), peakT]

]2
)period

30
. [22]

In the base-case calibration, we set peakT = 6◦C (Fig. 3B). While ad hoc, the
number is, if anything, unduly conservative (15, 39, 40, 55). SI Appendix,
Fig. S4A shows the resulting probabilities for a 30-y period. Conditional
on hitting a TP at time t∗, the level of consumption for each subse-
quent t≥ t∗ is reduced by the factor e−TPdamage, where TPdamage is drawn
from a gamma distribution with parameters α= 1 and β= disaster tail. SI
Appendix, Fig. S4B shows the resulting probability of economic damages
exceeding a particular percentage of total output.

We then generate distributions for Dt (CRFt , θt)for each period for each
of 3 maximum GHG concentration levels—450, 650, and 1,000 ppm—based
on 6 million draws each. These 3 scenarios correspond roughly to constant
mitigation of slightly over 90% for 450 ppm, almost 60% for 650 ppm, and
the IEA’s “new policies scenario” (53) for 1,000 ppm. The mapping happens
via CRF, interpolating and extrapolating across RCP scenarios (58). We fit a
log-function, estimating radiative forcing based on GHG emissions in any 10-y
interval as: 5.351 [log (GHG)− log (278)]. Carbon absorption in any 10-y inter-
val is given by 0.94835 |GHG− (285.6268 + 0.88414

∑
absorption)|0.741547.

We then interpolate between the 3 GHG levels to find a smooth damage
function for any particular level of CRFt . We assume a linear interpolation of
damages between 650 and 1,000 ppm and a quadratic interpolation between
450 and 650 ppm, including a smooth pasting condition at 650 ppm. Below
450 ppm, we assume that climate damages exponentially decay toward zero,
setting S = dp/(l ln(0.5)), where d is the derivative of the quadratic damage
interpolation function at 450 ppm and p = 0.91667 is the average mitigation
in the 450 ppm simulation, with l as damage levels (SI Appendix, Fig. S4C).

The representative agent knows the distribution of possible final states
θT . She does not know θt for t< T . In line with the recombining tree struc-
ture (36), climate damages are the probability-weighted average of the
interpolated damage function over all final climate states reachable from
any one node:

Dt (CRFt,θt)=
∑
θT

Pr(θT |θt)Dt (CRFt,θT ). [23]

Introducing CO2 removal (38, 52) (Backstop Technology), combined with
stochastic climate states θt , creates the possibility of GHG concentrations
falling below preindustrial levels of 280 ppm. While we know of no analysis
that estimates economic damages below 280 ppm, there clearly are costs,
much like going (well) above 280 ppm. We introduce a penalty function of
the form:

f (x) =
[
1 + ek (x−m)

]−1
. [24]

We arbitrarily set m = 200 as the GHG level resulting in half the total
penalty. Scalar k = 0.05 ensures a smooth penalty function. The combination
ensures that f (280)is almost zero, while still achieving a smooth surface. We
further restrict Dt ≥ 0 and xt ≥ 0.

Economic Parameters. Fig. 3A shows the CO2 price sensitivity to RA. With EZ,
the CO2 declines regardless of RA. We choose RA = 7 in our base-case calibra-
tion, a value roughly in line with attitudes toward large income risk across
wealthy countries (59): RA in the United States alone is often higher (> 8),
while RA in European welfare states can be as low as 3. Similar patterns as
those displayed in Fig. 3A (and in Fig. 4B for climate damage parameters)
hold for mitigation cost parameters (SI Appendix, Fig. S3) and an exhaustive
list of other economic parameters. The most important of these parameters
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appear to be the EIS (Fig. 3B and SI Appendix, Fig. S5) and the pure rate of
time preference δ= (1− β)/β from Eq. 1 (Fig. 3C and SI Appendix, Fig. S6).

Our base case assumes an economic growth rate c = 1.5 with the rate
itself unaffected by climate change, an important assumption to probe in
future work (60, 61). SI Appendix, Fig. S5A shows that varying it, while keep-
ing EIS = 0.9, has little influence on prices. SI Appendix, Fig. S5 B and C,
however, shows the large influence of EIS, regardless of assumed c. Note
that EIS calibrations have changed widely over time, dependent on the type
of risk modeled (62, 63). Modern comparable estimates range as high as
1.5 in a model with EZ preferences and consumption shocks (64), with sig-
nificant implications for CO2 prices in early years. We choose a lower EIS =
0.9 for our base case, in part because the only shocks to consumption in our
model stem from climate risk. Crucially, our model only captures societal

risk. Epstein himself, writing with 2 coauthors, has since offered a potent
critique of EZ preferences as applied to individual preferences (65).
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